Anchor

A Library for Building Secure Persistent Memory Systems

Dimitrios Stavrakakis, Dimitra Giantsidi, Maurice Bailleu,

Technische &%\ THE UNIVERSITY
Miinchen g; 9/ QfEDINBURGH

ACM SIGMOD 2024

Persistent memory in the cloud

Persistent memory in the cloud

&]
K 2

L
e €5) LB
",

Flash SSD

Magnetic HDD

\.l

O

|

&

Persistent memory in the cloud TI.ITI

a0

7 oy “~ RocksDB

S d
eeeeeee % EXD, re |S

:
& pmemkv

(i

Persistent memory in the cloud TI.ITI

* E A “~ RocksDB

@ e)r % di
eeeeeee * D re |S
Flash SSD

pmemkv

|

&

(i

[Persistent memory can benefit the offered cloud providers’ services J

Security threats in the cloud TI.ITI

‘ < Read/write
. operations

Untrusted cloud infrastructure

Hypervisor
Storage

Security threats in the cloud

‘ < Read/write
. operations

Untrusted cloud infrastructure

TUTI

VM #1
—
=7 VM #2 VM #n
Data management
Hypervisor

Storage

Security threats in the cloud

‘ < Read/write
. operations

Untrusted cloud infrastructure

TUTI

VM #1
—
=7 VM #2 VM #n
Data management
Hypervisor

Storage

Security threats in the cloud

‘ < Read/write
. operations

Untrusted cloud infrastructure

TUTI

VM #1
—
=7 VM #2 VM #n
Data management
Hypervisor

Storage

Security threats in the cloud

Untrusted cloud infrastructure

TUTI

‘ / VM #1
Read/write)

N’

=1

VM #2 |ees

VM #n

. < operations Data management
Hypervisor

Storage

[How can we protect client's data in untrusted cloud infrastructures?

10

Security threats in the cloud

Untrusted cloud infrastructure

‘ ey M ~ Memory
-— — - .
- 8 a4
Client Data In-memory é
~management . -data structures
Hypervisor
Storage

Security threats in the cloud

Untrusted cloud infrastructure

‘ Bl VM " Memory
-— — - ~
- &8 &
Client » Data In-memory é
-management -data structures:

Hypervisor

: > 6 Storage
8 #1 Manipulate Crash

in-memory and
persistent data

12

Security threats in the cloud

Untrusted cloud infrastructure

O

Client

v ™ Memory
- °
S - YN
Data ~ In-memory

5‘:.d_ata structurels..-'E

Hypervisor

8 #1 Manipulate

in-memory and
persistent data

o Storage

#2 Rollback

Crash

attacks

=

13

Security threats in the cloud

Untrusted cloud mfrastructure

#2 Rollback

__________ CPU VM Viemory
' #3 Modify network | - | :

< — : —] o
. traffic S son
Client Lk Data In-memory

management data structure_s
Hypervisor
. >~ @ Storage

8 #1 Manipulate Crash

in-memory and
persistent data

attacks

=

14

Problem statement

How to design a secure PM management system for
untrusted cloud environments?

15

Our proposal

Anchor: A Library for Building Secure Persistent Memory Systems

System properties:

End-to-end security: Confidentiality, integrity & freshness

Fault tolerance: Secure crash consistency

Programmability: PMDK programming model

Verifiability: Formal proofs of security protocols

16

Our proposal TI.ITI

Anchor: A Library for Building Secure Persistent Memory Systems

System properties:

End-to-end security: Confidentiality, integrity & freshness

Fault tolerance: Secure crash consistency
= Performance

Programmability: PMDK programming model

Verifiability: Formal proofs of security protocols

17

Outline

et duetion-SMetivat

* System design
e Design challenges
e System overview
e System operations

 Evaluation

18

Anchor basic design

Untrusted host memory

Operating System [Hypervisor

Untrusted PM

19

Anchor basic design TI.ITI

Common insight: Why not just use modern hardware extensions that provide TEEs?

Untrusted host memory

Trusted enclave memory

Operating System [Hypervisor

y Untrusted PM

20

Anchor basic design TI.ITI

Common insight: Why not just use modern hardware extensions that provide TEEs?

Untrusted host memory

Trusted enclave memory

{ PM management engine }

Operating System [Hypervisor

y Untrusted PM

21

Anchor basic design TI.ITI

Common insight: Why not just use modern hardware extensions that provide TEEs?

Untrusted host memory

Trusted enclave memory

[PM management engine }

Operating System [Hypervisor

‘«/ Untrusted PM

[Unfortunately, it is not enough out-of-the-box! J
22

Design challenges

-

A8

#1
Untrusted PM &
architectural limitations of SGX

J

23

Design challenges

e
#1

Untrusted PM &
architectural limitations of SGX

AV

)

#2
Secure crash consistency
for data & metadata

24

Design challenges

a I
#1
Untrusted PM &
architectural limitations of SGX
S)
a I

#3
Secure network communication &
attestation

¥

#2
Secure crash consistency
for data & metadata

)

25

Design challenges

a I
#1
Untrusted PM &
architectural limitations of SGX
S)
a I

#3
Secure network communication &
attestation

¥

#2
Secure crash consistency
for data & metadata

)

#4
Formal verification &
security analysis

26

Design challenges

(
#1 R
Untrusted PM &
architectural limitations of SGX
_ J
4)

.

#3
Secure network communication &
attestation

#2
Secure crash consistency
for data & metadata

.

#4
Formal verification &
security analysis

27

Challenge #1: Untrusted PM & architectural limitations of SGX

e TEEs protect only the volatile enclave memory | vplatile

enclave
memory
e Limited EPC size & expensive EPC paging (EPQ)
\ J
|

) g, X V.1

e Slow SGX trusted counters BEIE 1802 e.g >G .V

pac Counter ~128 MiB

28

Challenge #1: Untrusted PM & architectural limitations of SGX TI_ITI

e TEEs protect only the volatile enclave memory | volatile "C€UTY 1} ot tad PM

guarantees=
enclave
memory
e Limited EPC size & expensive EPC paging (EPQ)
\ J
|
) g, X V.1
e Slow SGX trusted counters BEIE 1802 e.g >G .V
pac Counter ~128 MiB

29

Challenge #1: Untrusted PM & architectural limitations of SGX TI_ITI

e TEEs protect only the volatile enclave memory | volatile ”Sasricn‘izzé Untrusted PM
enclave &
o _ . . memory _ EPC | Untrusted
e Limited EPC size & expensive EPC paging (EPQ) paging memory
(Y J
E L. X V.1
e Slow SGX trusted counters [EEE]=l LA &g 3G Y
o Counter ~128 MiB

30

Challenge #1: Untrusted PM & architectural limitations of SGX TI_ITI

e TEEs protect only the volatile enclave memory | volatile nzasr?nﬂS} Untrusted PM
enclave &
o _ . . memory _ EPC | Untrusted
e Limited EPC size & expensive EPC paging (EPQ) paging memory
(Y J
E L. X V.1
e Slow SGX trusted counters [EEE]=l LA &g 3G Y
o Counter ~128 MiB

Add a PM metadata log to secure the untrusted PM, minimize EPC utilization
and introduce an asynchronous trusted counter interface

31

Challenge #2: Secure crash consistency for data & metadata TI_ITI

e PM guarantees atomicity only for aligned 8-byte stores
o L

e Transactions with insecure redo/undo logs

Recovery

L ——o
e Security guarantees should be valid for the logs Consistent 4R
Data S

32

Challenge #2: Secure crash consistency for data & metadata TI_ITI

e PM guarantees atomicity only for aligned 8-byte stores

o L

o
e Transactions with insecure redo/undo logs
Recovery
' houl lid for the |

e Security guarantees should be valid for the logs Consistent R

Data _>

introduce a secure recovery protocol

{Enhance the log structure with security metadata to ensure secure logging and}
33

Challenge #3: Secure network communication & attestation TI_ITI

e Network buffers cannot be placed inside the enclave memory

e Ensure the security properties & crash consistency for remote operations

® The clients must be able to verify the authenticity of the running instance

34

Challenge #3: Secure network communication & attestation TI_ITI

e Network buffers cannot be placed inside the enclave memory

e Ensure the security properties & crash consistency for remote operations

® The clients must be able to verify the authenticity of the running instance

Design a secure network stack and introduce a secure remote attestation
protocol

35

System overview

TUTI

Trusted
enclave __J
memory

Untrusted
host memory

Operating system

S ——— |

Untrusted
PM

36

System overview TI.ITI

Truslted Untrusted
CNCIAVE g host memory
memory

Anchor controller

|
Operating system MMU Map |

S ——— |

Untrusted
PM

37

System overview

TUTI

Trusted
enclave __J
memory

Y

PM management
engine

|

Untrusted
host memory

Y

Anchor controller

Operating system

e S —— |

Untrusted
PM

38

System overview

TUTI

Trusted
enclave __J
memory

A

PM management
engine

a

Y

Anchor controller

Operating system

In-memory Untrusted
metadata host memory
B B

MMU|Map |

Untrusted
PM

39

System overview TI.ITI

Trusted | .
enclave __J {PM management | [ln-memory}] Ur;trusted

i - ost memor
memory engine)| metadata y

Y

Anchor controller

Operating system MMU | Map

—_——— e e]

A

PM

Secure PM pool
L ’ J [Metadata log file] Untrusted

40

System overview

Trusted
enclave __J
memory

|

Trusted
counter

A

/

Y

" PM management In-memory

L engine metadata

|

Y

Anchor controller

Operating system

[Secure PM pool J

[Metadata log file]

A

TUTI

Untrusted
host memory

—_——— e —

Untrusted
PM

41

System overview

Trusted
enclave __J
memory

|

Trusted
counter

Y

Ve

/

Y

o

PM management \‘

engine »

(ln-memory}
L metadata

Y

Anchor controller

Op

erating system

Secure PM pool
[Secure PM logs]

[Metadata log file]

A

TUTI

Untrusted
host memory

—_——— e —

Untrusted
PM

42

System overview

Trusted
enclave
memory

Client

_ Trusted : PM management : f In-memory
counter | | engine » L metadata
Anchor controller
> Attestation & Secure network
key management stack) ____

Op

erating system

Secure PM pool
[Secure PM logs J

[Metadata log file J

A

NS

—

TUTI

Untrusted
host memory

—_——— e —

Untrusted
PM

43

System overview

Trusted
enclave
memory

Client

_ Trusted : PM management : f In-memory
counter | | engine » L metadata
Anchor controller
> Attestation & Secure network
key management stack

Operating system

Secure PM pool
[Secure PM logs

[Metadata log ﬁIe?

A

TUTI

Untrusted
host memory

—_——— e —

Untrusted
PM

44

System operations - Write

45

System operations - Write

1. Write request

TUTI

Trusted
enclave —
memory

|

Trusted } [PM management} [

counter

engine

. Write

Anchor controller

f

. Request

Operating system

In-memory) Untrusted
metadata ost memory
R —
MMU Map |

Client

[Secure PM pool]

[Metadata log file]

Untrusted
PM

46

System operations - Write TI.ITI

2. Memory (re)allocation if needed

Trusted -
enclave [Trusted } [PM management In-memory} h Untrusted
memory counter engine I metadata ost memory
‘ (Anchor controller | e B
|
|
. Operating system __’\@A_EJ M?P__j
Client Untrusted
l Secure PM pool | [Metadata log file] ; PM

47

System operations - Write TI.ITI

3. If the object exists, fetch the data

Trusted
enclave [Trusted } [PM management} [In-memory} H Untrusted
memory counter engine metadata ost memory
. (Anchor controller | e
|
|
. Operating system __’\@A_EJ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

48

System operations - Write TI.ITI

4. Integrity signature verification & decryption

Trusted
enclave [Trusted 1 [PM management] [In-memory} hUntrusted
memory counter engine metadata ost memory
‘ (Anchor controller [F——
|
|
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

49

System operations - Write

Trusted
enclave —
memory

5. Append new entry in metadata log file

Client

|

Trusted PM management In-memory
counter engine metadata

Anchor controller

Operating system MMU

[Secure PM pool] | Metadata log file |

TUTI

Untrusted
host memory

S —— |

Untrusted
PM

50

System operations - Write TI.ITI

6. Trusted counter increment

Trusted
enclave [Trusted PM management} [In-memory} hUntrusted
memory counter I [engine metadata ost memory
. (Anchor controller [F——
|
|
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

51

System operations - Write TI.ITI

7. Get next counter and expected time

Trusted
enclave [Trusted PM management} [In-memory} hUntrusted
memory counter I [engine metadata ost memory
. (Anchor controller [F——
|
|
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

52

System operations - Write TI.ITI

8. Store updated data in PM pool

Trusted
enclave —— [Trusted 1 {PM management} [In-memory} hU:trUStEd

‘ ost memory
memory counter engine metadata

|
|
. Operating system MMUMap |

S S — |

Client Untrusted
l Secure PM pool | [Metadata log file] ; PM

53

‘ Anchor controller

System operations - Write

TUTI

9. Return success & expected time

Trusted
enclave —
memory

|

Trusted } [PM management} [In-memory

counter

engine

} Untrusted

metadata host memory

A A

. Success

Anchor controller

|

'~ Py

Operating system MMU Map

B S ——— |

Client

[Secure PM pool]

Untrusted
PM

[Metadata log file]

54

Outline
l L etiom-SMotivat
—System-design

* Evaluation

55

Evaluation

What is the performance overhead of Anchor?

- Persistent indices (ctree, btree, rtree, rbtree, hashmap)

How does Anchor affect basic PM management operations?

- PM operations (alloc, update, free)

What is the recovery and boot-up time of a PM pool with Anchor?

- Variable metadata log & log sizes

How do we ensure the security properties of Anchor?

- Dynamic security analysis & formal verification of security protocols

56

Evaluation

What is the performance overhead of Anchor?

- Persistent indices (ctree, btree, rtree, rbtree, hashmap)

How does Anchor affect basic PM management operations?

- PM operations (alloc, update, free)

What is the recovery and boot-up time of a PM pool with Anchor?

- Variable metadata log & log sizes

How do we ensure the security properties of Anchor?

- Dynamic security analysis & formal verification of security protocols

57

Evaluation

- Experimental setup:
- Intel(R) Core(TM) i9-9900K CPU (3.60GHz, 8 cores) with SGX v.1
- 64 GB DRAM
- PM emulation and DAX file system backed by DRAM

58

Evaluation

- Experimental setup:
- Intel(R) Core(TM) i9-9900K CPU (3.60GHz, 8 cores) with SGX v.1
- 64 GB DRAM
- PM emulation and DAX file system backed by DRAM

- Variants:
- PMDK — Plain PMDK running in the native environment
- Native Anchor — Anchor running outside the TEE (native environment)

- Anchor — Anchor running inside the TEE

59

Performance overheads

PM data structures: ctree, btree, rtree, rbtree, hashmap
YCSB workload 10M ops, 50% reads [50% writes

400000 -

Throughput (Ops/sec)

50000 A

350000 -

300000 -

250000 A

200000 -

150000 A

100000

s PMDK

B Anchor

ctree

[Native Anchor

btree

rtree rbtree hashmap
Data structure

-

Higher is better

60

Performance overheads

e PM data structures: ctree, btree, rtree, rbtree, hashmap
e YCSB workload 10M ops, 50% reads [50% writes

B PMDK
[Native Anchor
B Anchor

400000 -

-

350000 -

300000 -

250000 A

200000 -

150000 A

100000 A

Throughput (Ops/sec)
Higher is better

50000 A

ctree btree rtree rbtree hashmap
Data structure

Anchor’s slowdown is reasonable considering its strong security properties

PM management operations

e PM management operations: alloc, update, free
e PM object size: 64, 128, 256, 512, 1024 bytes

10

Slowdown w.r.t. PMDK

64 128

512

PM object size (bytes)

Il alloc
[update
B free
[Native Anchor
[Z—1 Anchor

1024

Lower is better

62

PM management operations TI.ITI

e PM management operations: alloc, update, free
e PM object size: 64, 128, 256, 512, 1024 bytes

10 4

Il alloc

[update
X | I free
o ; (-
s 1 Native Anchor]
CL- [Z—1 Anchor _‘-ij
+ o6 g
| -
= i)
c

(-

5. g
2e) s
= @]
o —
wn 21 v

1024

128 256 512
PM object size (bytes)

64

[Anchor incurs lower overheads in PM operations as the PM object size increases J

63

Summary TI.ITI

How to leverage TEEs to design a secure, performant PM system that preserves

crash consistency while following the PM programming model?

Anchor: A Library for Building Secure Persistent Memory Systems

e Security properties: confidentiality, integrity & freshness
e PMDK:-like programming model
e Secure crash consistency via a formally verified secure logging protocol

e Secure network stack and formally verified remote attestation protocol

64

Backup!

Recovery and boot-up time

e Metadata log size: 138, 224 MiB
e logsize: 0, ~1, ~5 MiB

Metadata log size (MiB) 138
Log size (MiB) 0 0.98 4.88

Recovery/boot time (s) 3.02 3.02 3.09

4.17

224
0.98 4.88
4.1 4.12

66

Recovery and boot-up time

e Metadata log size: 138, 224 MiB
e logsize: 0, ~1, ~5 MiB

Metadata log size (MiB) 138 224
Log size (MiB) 0 0.98 4.88 0 0.98 4.88
Recovery/boot time (s) 3.02 3.02 3.09 4.17 4.1 4.12

[Anchor has low boot-up times — mostly determined by the metadata log size }

67

Challenge #4: Formal verification & security analysis TI.ITI

e The securelogging protocol must preserve the required security properties

e The attestation protocol must be correct and adhere to the security principles

e The data management operations do not introduce additional attack vectors

68

Challenge #4: Formal verification & security analysis TI.ITI

e The securelogging protocol must preserve the required security properties

e The attestation protocol must be correct and adhere to the security principles

e The data management operations do not introduce additional attack vectors

Formally verify the secure logging and the remote attestation protocols &
leverage dynamic analysis tools for security analysis

69

Security analysis

e Dynamic security analysis
o Memory safety guarantees using Address Sanitizer

o Crash consistency using Valgrind’s memcheck

e Formal verification of Security Protocols using Tamarin
o Remote attestation protocol

o Secure logging protocol

70

Security analysis TI_ITI

e Dynamic security analysis
o Memory safety guarantees using Address Sanitizer

o Crash consistency using Valgrind’s memcheck

e Formal verification of Security Protocols using Tamarin
o Remote attestation protocol

o Secure logging protocol

Anchor does not introduce memory safety bugs, preserves the crash consistency
property and uses formally verified security protocols

71

Trusted execution environments TI_ITI

* TEE: Hardware extensions (ISAs) for trusted computing | Memory address space

(e.g. Intel SGX, ARM TrustZone)
Secure memory

e Abstraction: Secure memory region where application region (enclave)
code and data are secured Shielded
application

e Shielded execution: Runtime framework for running
unmodified applications inside a TEE

Operating system

TEE
Hardware (SGX)

72

Component #1: In-memory metadata TI.ITI

[In-memory structures maintain object metadata }

) Search Object integrity signature
Object ID — ; EPC metadata index

EPC index for secure metadata store and data caching for performance

73

Component #2: Metadata log file (manifest)

[Manifest file maintains pool object metadata
Entry 1 Entry 2
Object . : :
:) C Object Object | Trusted | Integrity Entry
Integrity : :
. ID size counter | signature data
signature

Loaded manifest data is the base for integrity and freshness checks

Component #3: Secure undo/redo log TI.ITI

[Log mechanism to preserve crash consistency and security principles }

Log header Entry 1 Entry 2
Trusted Entry | Trusted | Logged | Integrity Entry
counter header | counter data | signature data

Achieve secure logging leveraging integrity signatures and trusted counters

75

Component #4: Trusted counter TI.ITI

[Trusted counter helps us argue about the freshness property }
Async Async
increment increment

Expected time

» Time

Unstable time
Sync Sync
Trusted counter checks performed for freshness verification

76

Persistent memory

CPU

LD/ST 1

File I/O 1

SSD

Volatile
Fast
Byte-addressable

Non-volatile
Slower
Block-addressable

77

Persistent memory TI.ITI

CPU
LD/ST I
é .
* Volatile
DRAM |G - Fast e Persistent memory allocation
: < saB¥iciaddressable « Data visibility vs persistence
File 1/O ,
* Non-volatile NVM-PM + Crash consistency
SSD » Slower
* Block-addressable

78

Persistent memory TI_ITI

CPU
LD/ST 1 p
* Volatile \
DRAM [ESICI(« Fast J * Persistent memory allocation)
File 1/0 1 - * Byte-addressable » Data visibility vs persistence
L Non-volatile) NVM-PM + Crash consistency)
SSD . Slower
* Block-addressable

79

System operations - Read

80

System operations - Read

1. Read request

TUTI

Trusted
enclave —
memory

|

Trusted } [PM management} [

counter

In-memory

Untrusted
metadata }

host memory

engine

. Read

Anchor controller

f

. Request

Operating system

B S ——— |

Client

[Secure PM pool]

[Metadata log file]

Untrusted
PM

81

System operations - Read TI.ITI

2. Integrity signature lookup

Trusted
enclave [Trusted] [PM management In-memory} H Untrusted
memory counter engine l [metadata ost memory
. (Anchor controller [
|
|
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

82

System operations - Read TI.ITI

3. Fetch object data

Trusted |
enclave —— [Trusted } [PM management} [In-memory}] Ur;trusted

‘ ost memory
memory counter engine metadata

|
|
. Operating system MMU|Map |

S S — |

Client Untrusted
l Secure PM pool | [Metadata log file] PM

83

‘ Anchor controller

System operations - Read TI.ITI

4. Integrity signature verification & decryption

Trusted
enclave [Trusted 1 [PM management] [In-memory} hUr;trusted
. ost memory
memory counter engine metadata
‘ (Anchor controller [
|
|
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

84

System operations - Read

TUTI

5. Return object data to the client

Trusted
enclave —
memory

~—

|

Trusted } [PM management} [In-memory

counter

engine

} Untrusted

metadata host memory

. Return

Anchor controller

|

- o

Operating system MMU Map

B S ——— |

Client

[Secure PM pool]

Untrusted
PM

[Metadata log file]

85

System operations - Recovery

86

System operations - Recovery TI.ITI

1. System recovery

Trusted
enclave [Trusted } [PM management} [In-memory} h Ur;trusted
) ost memor
memory counter engine metadata y
. (Anchor controller |
f |
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

87

System operations - Recovery TI.ITI

2. Log header check for recovery

Trusted Y
enclave [Trusted } [PM management In-memory} h Untrusted
memory counter engine l [metadata ost memory
‘ Anchorcontroller |
|
|
. Operating system __’\@A_EJ M?P__j
Client Untrusted
l Secure PM pool | [Metadata log file] PM

88

System operations - Recovery TI.ITI

3. Fetch log entries in secure memory

Trusted Y
enclave [Trusted } [PM management} [In-memory} h Untrusted
memory counter engine metadata ost memory
‘ Anchorcontroller |
|
|
. Operating system __’\@A_EJ M?P__j
Client Untrusted
l Secure PM pool | [Metadata log file] PM

89

System operations - Recovery TI.ITI

4. Perform integrity & freshness check

Trusted
enclave __| [Trusted } [PM management] [In-memory} hUr;trusted
) ost memory
memory counter engine metadata
. Anchor controller
|
|
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

90

System operations - Recovery TI.ITI

5. Apply (undo/redo) logged operations to PM

Trusted
enclave __J [Trusted } [PM management} [In-memory} hUntrusted
memory counter engine metadata ost memory
‘ Anchor controller | |
|
|
. Operating system __’\@A_EJ M?P__J
Client Untrusted
l Secure PM pool | | Metadata log file | PM

91

System operations - Recovery TI.ITI

6. Invalidate logs

Trusted Y
enclave __J [Trusted } [PM management} [In-memory} hUntrusted
memory counter engine metadata ost memory
‘ Anchor controller | |
|
|
. Operating system __’\@A_EJ M?P__J
Client Untrusted
l Secure PM pool | | Metadata log file | PM

92

System operations - Recovery TI.ITI

7. Return successful recovery message

Trusted
enclave [Trusted } [PM management} [In-memory} h Ur;trusted
) ost memory
memory counter engine metadata
. (Anchor controller |
) | |
. Operating system . _'\@A_ EJ_ M?P__j
Client Untrusted
[Secure PM pool] [Metadata log file] PM

93

System operations - Read (embedded animations)

4. Integrﬂgbdge@ﬂm e itz

b
pdioasal (i

akyption

Trusted
enclave —
memory

~—_]

|

Trusted } [PM management |

counter

engine

B

In-memory
metadata

|

‘ _Rtadn

Anchor controller

i

0 femes

Operating system

Client

l Secure PM pool |

[Metadata log file]

TUTI

Untrusted
host memory

S —— |

Untrusted
PM

94

System operations - Write (embedded animations)

Trusted
enclave —
memory

~—

|

Trusted PM management
counter engine

J-

-
In-memory

metadata

J

‘ :S\Atm't-:es

Anchor controller

i

O Batione

Operating system

PR

Client

l Secure PM pool l

' Metadata log file |

"

TUTI

Untrusted
host memory

S —— |

Untrusted
PM

95

System operations - Recovery (embedded animations) TI_ITI

Trusted

enclave —— [Trusted } [PM management In-memory} hUr;trusted
' I ost memor

memory counter engine metadata y

Anchor controller

.) { R
@‘ Operating system MMU|Map |

—_—_

Untrusted
| Secure PM pool ' l Metadata log file l . PM

96

