
Anchor
A Library for Building Secure Persistent Memory Systems

Dimitrios Stavrakakis, Dimitra Giantsidi, Maurice Bailleu,
Philip Sändig, Shady Issa, Pramod Bhatotia

ACM SIGMOD 2024

Persistent memory in the cloud

2

Persistent memory in the cloud

3

Persistent memory in the cloud

4

Persistent memory in the cloud

5

Persistent memory can benefit the offered cloud providers’ services

Security threats in the cloud

Read/write

operations

Untrusted cloud infrastructure

6

Hypervisor
Storage

Security threats in the cloud

Read/write

operations

Untrusted cloud infrastructure

7

VM #1

Data management
VM #2 … VM #n

Hypervisor
Storage

Security threats in the cloud

Read/write

operations

Untrusted cloud infrastructure

8

VM #1

Data management
VM #2 … VM #n

Hypervisor
Storage

Security threats in the cloud

Read/write

operations

Untrusted cloud infrastructure

9

VM #1

Data management
VM #2 … VM #n

Hypervisor
Storage

Security threats in the cloud

Read/write

operations

Untrusted cloud infrastructure

10

How can we protect client's data in untrusted cloud infrastructures?

VM #1

Data management
VM #2 … VM #n

Hypervisor
Storage

Security threats in the cloud

Untrusted cloud infrastructure

11

VM

Data
management

Hypervisor

Storage

Client In-memory
data structures

CPU Memory

Security threats in the cloud

Untrusted cloud infrastructure

12

VM

Data
management

Hypervisor

Storage

Client In-memory
data structures

#1 Manipulate
in-memory and
persistent data

CPU Memory

Crash

Security threats in the cloud

Untrusted cloud infrastructure

13

VM

Data
management

Hypervisor

Storage

Client In-memory
data structures

 #2 Rollback
attacks#1 Manipulate

in-memory and
persistent data

CPU Memory

Crash

Security threats in the cloud

Untrusted cloud infrastructure

14

VM

Data
management

Hypervisor

Storage

Client In-memory
data structures

 #2 Rollback
attacks#1 Manipulate

in-memory and
persistent data

#3 Modify network
traffic

CPU Memory

Crash

Problem statement

15

How to design a secure PM management system for
untrusted cloud environments?

Our proposal

Anchor: A Library for Building Secure Persistent Memory Systems

System properties:

• End-to-end security: Confidentiality, integrity & freshness

• Fault tolerance: Secure crash consistency

• Programmability: PMDK programming model

• Verifiability: Formal proofs of security protocols

16

Our proposal

Anchor: A Library for Building Secure Persistent Memory Systems

System properties:

• End-to-end security: Confidentiality, integrity & freshness

• Fault tolerance: Secure crash consistency

• Programmability: PMDK programming model

• Verifiability: Formal proofs of security protocols

Performance

17

• Introduction & Motivation

• System design
• Design challenges
• System overview
• System operations

• Evaluation

Outline

18

Untrusted host memory

Anchor basic design

Untrusted PM

19

Operating System / Hypervisor

Untrusted host memory

Anchor basic design

Untrusted PM

20

Operating System / Hypervisor

Trusted enclave memory

Common insight: Why not just use modern hardware extensions that provide TEEs?

Untrusted host memory

Anchor basic design

Untrusted PM

21

Common insight: Why not just use modern hardware extensions that provide TEEs?

Operating System / Hypervisor

Trusted enclave memory

PM management engine

Untrusted host memory

Anchor basic design

Untrusted PM

22

Common insight: Why not just use modern hardware extensions that provide TEEs?

Unfortunately, it is not enough out-of-the-box!

Operating System / Hypervisor

Trusted enclave memory

PM management engine

Design challenges

23

#1
Untrusted PM &

architectural limitations of SGX

Design challenges

24

#1
Untrusted PM &

architectural limitations of SGX

#2
Secure crash consistency

for data & metadata

Design challenges

25

#1
Untrusted PM &

architectural limitations of SGX

#2
Secure crash consistency

for data & metadata

#3
Secure network communication &

attestation

Design challenges

26

#1
Untrusted PM &

architectural limitations of SGX

#2
Secure crash consistency

for data & metadata

#3
Secure network communication &

attestation

#4
Formal verification &

security analysis

Design challenges

27

#1
Untrusted PM &

architectural limitations of SGX

#2
Secure crash consistency

for data & metadata

#3
Secure network communication &

attestation

#4
Formal verification &

security analysis

● TEEs protect only the volatile enclave memory

● Limited EPC size & expensive EPC paging

● Slow SGX trusted counters

Challenge #1: Untrusted PM & architectural limitations of SGX

28

Volatile
enclave
memory

(EPC)

e.g., SGX v.1
~128 MiB

● TEEs protect only the volatile enclave memory

● Limited EPC size & expensive EPC paging

● Slow SGX trusted counters

Untrusted PM
no security
guarantees

Challenge #1: Untrusted PM & architectural limitations of SGX

29

Volatile
enclave
memory

(EPC)

e.g., SGX v.1
~128 MiB

● TEEs protect only the volatile enclave memory

● Limited EPC size & expensive EPC paging

● Slow SGX trusted counters

Untrusted PM
no security
guarantees

Challenge #1: Untrusted PM & architectural limitations of SGX

30

Volatile
enclave
memory

(EPC)
Untrusted
memory

EPC

paging

e.g., SGX v.1
~128 MiB

● TEEs protect only the volatile enclave memory

● Limited EPC size & expensive EPC paging

● Slow SGX trusted counters

Untrusted PM
no security
guarantees

Challenge #1: Untrusted PM & architectural limitations of SGX

Add a PM metadata log to secure the untrusted PM, minimize EPC utilization
and introduce an asynchronous trusted counter interface

31

Volatile
enclave
memory

(EPC)
Untrusted
memory

EPC

paging

e.g., SGX v.1
~128 MiB

● PM guarantees atomicity only for aligned 8-byte stores

● Transactions with insecure redo/undo logs

● Security guarantees should be valid for the logs

Challenge #2: Secure crash consistency for data & metadata

Consistent
Data

Crash

Recovery

32

● PM guarantees atomicity only for aligned 8-byte stores

● Transactions with insecure redo/undo logs

● Security guarantees should be valid for the logs

Challenge #2: Secure crash consistency for data & metadata

Consistent
Data

Crash

Recovery

Enhance the log structure with security metadata to ensure secure logging and
introduce a secure recovery protocol

33

● Network buffers cannot be placed inside the enclave memory

● Ensure the security properties & crash consistency for remote operations

● The clients must be able to verify the authenticity of the running instance

Challenge #3: Secure network communication & attestation

34

● Network buffers cannot be placed inside the enclave memory

● Ensure the security properties & crash consistency for remote operations

● The clients must be able to verify the authenticity of the running instance

Challenge #3: Secure network communication & attestation

35

Design a secure network stack and introduce a secure remote attestation
protocol

MMU Map

System overview

Operating system

Untrusted
host memory

Untrusted
PM

Trusted
enclave
memory

36

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

37

Untrusted
PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

38

PM management
engine

Untrusted
PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

39

PM management
engine

In-memory
metadata

Untrusted
PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

40

PM management
engine

In-memory
metadata

Metadata log file
Secure PM pool Untrusted

PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

41

PM management
engine

In-memory
metadata

Metadata log file
Secure PM pool

Trusted
counter

Untrusted
PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

42

PM management
engine

In-memory
metadata

Metadata log file
Secure PM pool

Trusted
counter

Secure PM logs
Untrusted

PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

43

PM management
engine

In-memory
metadata

Metadata log file
Secure PM pool

Trusted
counter

Secure PM logs

Attestation &
key management

Secure network
stack

Client

Untrusted
PM

MMU Map

System overview

Operating system

Anchor controller

Untrusted
host memory

Trusted
enclave
memory

44

PM management
engine

In-memory
metadata

Metadata log file
Secure PM pool

Trusted
counter

Secure PM logs

Attestation &
key management

Secure network
stack

Client

Untrusted
PM

System operations - Write

45

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Write

Request

1. Write request

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

46

Client

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

47

Client
Secure PM pool

In-memory
metadata

2. Memory (re)allocation if needed

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

48

Client

3. If the object exists, fetch the data

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

49

Client

4. Integrity signature verification & decryption

PM management
engine

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

50

Client

5. Append new entry in metadata log file

Metadata log file

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

51

Client

6. Trusted counter increment

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

52

Client

7. Get next counter and expected time

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

53

Client

8. Store updated data in PM pool

Secure PM pool

MMU Map

System operations - Write

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

54

Client

9. Return success & expected time

Success

Exp time

• Introduction & Motivation

• System design

• Evaluation

Outline

55

- What is the performance overhead of Αnchor?
- Persistent indices (ctree, btree, rtree, rbtree, hashmap)

- How does Anchor affect basic PM management operations?
- PM operations (alloc, update, free)

- What is the recovery and boot-up time of a PM pool with Anchor?
- Variable metadata log & log sizes

- How do we ensure the security properties of Anchor?
- Dynamic security analysis & formal verification of security protocols

Evaluation

56

- What is the performance overhead of Αnchor?
- Persistent indices (ctree, btree, rtree, rbtree, hashmap)

- How does Anchor affect basic PM management operations?
- PM operations (alloc, update, free)

- What is the recovery and boot-up time of a PM pool with Anchor?
- Variable metadata log & log sizes

- How do we ensure the security properties of Anchor?
- Dynamic security analysis & formal verification of security protocols

Evaluation

57

Evaluation

- Experimental setup:

- Intel(R) Core(TM) i9-9900K CPU (3.60GHz, 8 cores) with SGX v.1

- 64 GB DRAM

- PM emulation and DAX file system backed by DRAM

58

Evaluation

- Experimental setup:

- Intel(R) Core(TM) i9-9900K CPU (3.60GHz, 8 cores) with SGX v.1

- 64 GB DRAM

- PM emulation and DAX file system backed by DRAM

59

- Variants:

- PMDK → Plain PMDK running in the native environment

- Native Anchor → Anchor running outside the TEE (native environment)

- Anchor → Anchor running inside the TEE

Performance overheads

60

● PM data structures: ctree, btree, rtree, rbtree, hashmap
● YCSB workload 10M ops, 50% reads / 50% writes

H
ig

he
r i

s
be

tt
er

Performance overheads

61

● PM data structures: ctree, btree, rtree, rbtree, hashmap
● YCSB workload 10M ops, 50% reads / 50% writes

Anchor’s slowdown is reasonable considering its strong security properties

H
ig

he
r i

s
be

tt
er

PM management operations

62

● PM management operations: alloc, update, free
● PM object size: 64, 128, 256, 512, 1024 bytes

Lo
w

er
 is

 b
et

te
r

PM management operations

63

● PM management operations: alloc, update, free
● PM object size: 64, 128, 256, 512, 1024 bytes

Anchor incurs lower overheads in PM operations as the PM object size increases

Lo
w

er
 is

 b
et

te
r

Summary

64

Anchor: A Library for Building Secure Persistent Memory Systems

● Security properties: confidentiality, integrity & freshness

● PMDK-like programming model

● Secure crash consistency via a formally verified secure logging protocol

● Secure network stack and formally verified remote attestation protocol

How to leverage TEEs to design a secure, performant PM system that preserves
crash consistency while following the PM programming model?

Backup!

65

Recovery and boot-up time

66

Metadata log size (MiB) 138 224

Log size (MiB) 0 0.98 4.88 0 0.98 4.88

Recovery/boot time (s) 3.02 3.02 3.09 4.17 4.11 4.12

● Metadata log size: 138, 224 MiB
● Log size: 0, ~1, ~5 MiB

Recovery and boot-up time

67

Anchor has low boot-up times – mostly determined by the metadata log size

Metadata log size (MiB) 138 224

Log size (MiB) 0 0.98 4.88 0 0.98 4.88

Recovery/boot time (s) 3.02 3.02 3.09 4.17 4.11 4.12

● Metadata log size: 138, 224 MiB
● Log size: 0, ~1, ~5 MiB

● The secure logging protocol must preserve the required security properties

● The attestation protocol must be correct and adhere to the security principles

● The data management operations do not introduce additional attack vectors

Challenge #4: Formal verification & security analysis

68

● The secure logging protocol must preserve the required security properties

● The attestation protocol must be correct and adhere to the security principles

● The data management operations do not introduce additional attack vectors

Challenge #4: Formal verification & security analysis

69

Formally verify the secure logging and the remote attestation protocols &
leverage dynamic analysis tools for security analysis

Security analysis

● Dynamic security analysis

○ Memory safety guarantees using Address Sanitizer

○ Crash consistency using Valgrind’s memcheck

● Formal verification of Security Protocols using Tamarin

○ Remote attestation protocol

○ Secure logging protocol

70

Security analysis

● Dynamic security analysis

○ Memory safety guarantees using Address Sanitizer

○ Crash consistency using Valgrind’s memcheck

● Formal verification of Security Protocols using Tamarin

○ Remote attestation protocol

○ Secure logging protocol

71

Anchor does not introduce memory safety bugs, preserves the crash consistency
property and uses formally verified security protocols

• TEE: Hardware extensions (ISAs) for trusted computing
(e.g. Intel SGX, ARM TrustZone)

• Abstraction: Secure memory region where application
code and data are secured

• Shielded execution: Runtime framework for running
unmodified applications inside a TEE

Trusted execution environments

Memory address space

Operating system

Hardware TEE
(SGX)

Secure memory
region (enclave)

Shielded
application

72

Component #1: In-memory metadata

Object ID

EPC index for secure metadata store and data caching for performance

In-memory structures maintain object metadata

Object integrity signature
EPC metadata indexSearch ...

73

Component #2: Metadata log file (manifest)

Entry 1 Entry 2 ...
Object

integrity
signature

Object
ID

Object
size

Trusted
counter

Integrity
signature

Entry
data

Loaded manifest data is the base for integrity and freshness checks

Manifest file maintains pool object metadata

74

Component #3: Secure undo/redo log

Entry
header

Trusted
counter

Logged
data

Integrity
signature

Entry
data

Log header

Trusted
counter

Entry 1 Entry 2 ...

Achieve secure logging leveraging integrity signatures and trusted counters

Log mechanism to preserve crash consistency and security principles

75

Component #4: Trusted counter

Time

Sync Sync

Unstable time

Async
increment

Async
increment

Expected time

Trusted counter checks performed for freshness verification

Trusted counter helps us argue about the freshness property

76

Persistent memory

CPU

DRAM

SSD

LD/ST

File I/O

• Volatile
• Fast
• Byte-addressable

• Non-volatile
• Slower
• Block-addressable

77

Persistent memory

CPU

DRAM

SSD

LD/ST

File I/O

• Volatile
• Fast
• Byte-addressable

• Non-volatile
• Slower
• Block-addressable

NVM-PM

• Persistent memory allocation

• Data visibility vs persistence

• Crash consistency

78

Persistent memory

CPU

DRAM

SSD

LD/ST

File I/O

• Volatile
• Fast
• Byte-addressable

• Non-volatile
• Slower
• Block-addressable

NVM-PM

• Persistent memory allocation

• Data visibility vs persistence

• Crash consistency

79

System operations - Read

80

MMU Map

System operations - Read

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Untrusted
host memory

Trusted
enclave
memory

Read
Request

1. Read request

Metadata log fileSecure PM pool
Untrusted

PM

81

Client

MMU Map

System operations - Read

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Untrusted
host memory

Trusted
enclave
memory

2. Integrity signature lookup

Metadata log fileSecure PM pool
Untrusted

PM

82

Client

MMU Map

System operations - Read

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Untrusted
host memory

Trusted
enclave
memory

3. Fetch object data

Metadata log fileSecure PM poolSecure PM pool
Untrusted

PM

83

Client

MMU Map

System operations - Read

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Untrusted
host memory

Trusted
enclave
memory

4. Integrity signature verification & decryption

PM management
engine

Metadata log fileSecure PM pool
Untrusted

PM

84

Client

Data
Return

MMU Map

System operations - Read

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Untrusted
host memory

Trusted
enclave
memory

5. Return object data to the client

Metadata log fileSecure PM pool
Untrusted

PM

85

Client

System operations - Recovery

86

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

1. System recovery

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

87

Client

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

2. Log header check for recovery

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

88

Client
Secure PM pool

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

3. Fetch log entries in secure memory

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

89

Client
Secure PM pool

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

4. Perform integrity & freshness check

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

90

Client

PM management
engine

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

5. Apply (undo/redo) logged operations to PM

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

91

Client
Secure PM pool Metadata log file

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

6. Invalidate logs

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

92

Client
Secure PM pool Metadata log file

MMU Map

System operations - Recovery

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

7. Return successful recovery message

Trusted
enclave
memory

Metadata log fileSecure PM pool

Untrusted
host memory

Untrusted
PM

93

Client

MMU Map

System operations - Read (embedded animations)

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Untrusted
host memory

Trusted
enclave
memory

Read
Request

1. Read request2. Integrity signature lookup3. Fetch object data

PM management
engine

4. Integrity signature verification & decryption5. Return object data to the client

Return
Data

Metadata log fileSecure PM poolSecure PM pool
Untrusted

PM

94

Client

MMU Map

System operations - Write (embedded animations)

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

Write

Request

1. Write request

Trusted
enclave
memory

2. Memory (re)allocation if needed3. Fetch object data4. Integrity signature verification & decryption

PM management
engine

5. Append new entry in metadata log file6. Trusted counter increment7. Get stable counter and expected time8. Store updated data in PM pool

Success

Exp time

9. Return success & expected time

Metadata log fileSecure PM poolSecure PM poolSecure PM pool Metadata log file

Untrusted
host memory

Untrusted
PM

In-memory
metadata

95

Client

MMU Map

System operations - Recovery (embedded animations)

Operating system

Anchor controller

PM management
engine

In-memory
metadata

Trusted
counter

1. System recovery

Trusted
enclave
memory

Client

2. Log header check for recovery3. Fetch log entries in secure memory4. Perform integrity & freshness check

PM management
engine

5. Apply (undo/redo) logged operations to PM 6. Invalidate logs 7. Return successful recovery message

Metadata log fileSecure PM poolSecure PM poolSecure PM poolSecure PM poolSecure PM pool Metadata log fileMetadata log file

Untrusted
host memory

Untrusted
PM

96

