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[ Persistent memory can benefit the offered cloud providers’ services J
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Security threats in the cloud
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[ How can we protect client's data in untrusted cloud infrastructures?
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Security threats in the cloud
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Security threats in the cloud
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Problem statement

How to design a secure PM management system for
untrusted cloud environments?
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Our proposal

Anchor: A Library for Building Secure Persistent Memory Systems

System properties:

End-to-end security: Confidentiality, integrity & freshness

Fault tolerance: Secure crash consistency

Programmability: PMDK programming model

Verifiability: Formal proofs of security protocols
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Our proposal TI.ITI

Anchor: A Library for Building Secure Persistent Memory Systems

System properties:

End-to-end security: Confidentiality, integrity & freshness

Fault tolerance: Secure crash consistency
= Performance

Programmability: PMDK programming model

Verifiability: Formal proofs of security protocols
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e Design challenges
e System overview
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 Evaluation
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Anchor basic design
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Anchor basic design TI.ITI

Common insight: Why not just use modern hardware extensions that provide TEEs?
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Anchor basic design TI.ITI

Common insight: Why not just use modern hardware extensions that provide TEEs?

Untrusted host memory

Trusted enclave memory

[ PM management engine }

Operating System [ Hypervisor

‘«/ Untrusted PM

[ Unfortunately, it is not enough out-of-the-box! J
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Design challenges
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Challenge #1: Untrusted PM & architectural limitations of SGX

e TEEs protect only the volatile enclave memory | vplatile

enclave
memory
e Limited EPC size & expensive EPC paging (EPQ)
\ J
|

) g, X V.1

e Slow SGX trusted counters BEIE 1802 e.g >G .V

pac Counter ~128 MiB
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Challenge #1: Untrusted PM & architectural limitations of SGX TI_ITI

e TEEs protect only the volatile enclave memory | volatile nzasr?nﬂS} Untrusted PM
enclave &
o _ . . memory _ EPC | Untrusted
e Limited EPC size & expensive EPC paging (EPQ) paging memory
( Y J
E L. X V.1
e Slow SGX trusted counters [EEE]=l LA &g 3G Y
o Counter ~128 MiB

Add a PM metadata log to secure the untrusted PM, minimize EPC utilization
and introduce an asynchronous trusted counter interface
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Challenge #2: Secure crash consistency for data & metadata TI_ITI

e PM guarantees atomicity only for aligned 8-byte stores
o L

e Transactions with insecure redo/undo logs

Recovery

L ——o
e Security guarantees should be valid for the logs Consistent 4R
Data S
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Challenge #2: Secure crash consistency for data & metadata TI_ITI

e PM guarantees atomicity only for aligned 8-byte stores

o L

o
e Transactions with insecure redo/undo logs
Recovery
' houl lid for the |

e Security guarantees should be valid for the logs Consistent R

Data _>

introduce a secure recovery protocol

{Enhance the log structure with security metadata to ensure secure logging and}
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Challenge #3: Secure network communication & attestation TI_ITI

e Network buffers cannot be placed inside the enclave memory

e Ensure the security properties & crash consistency for remote operations

® The clients must be able to verify the authenticity of the running instance
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Challenge #3: Secure network communication & attestation TI_ITI

e Network buffers cannot be placed inside the enclave memory

e Ensure the security properties & crash consistency for remote operations

® The clients must be able to verify the authenticity of the running instance

Design a secure network stack and introduce a secure remote attestation
protocol
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System operations - Write
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System operations - Write
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System operations - Write TI.ITI

2. Memory (re)allocation if needed
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System operations - Write TI.ITI
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System operations - Write TI.ITI
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System operations - Write
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System operations - Write TI.ITI

6. Trusted counter increment
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System operations - Write TI.ITI
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System operations - Write TI.ITI
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System operations - Write
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Evaluation

What is the performance overhead of Anchor?

- Persistent indices (ctree, btree, rtree, rbtree, hashmap)

How does Anchor affect basic PM management operations?

- PM operations (alloc, update, free)

What is the recovery and boot-up time of a PM pool with Anchor?

- Variable metadata log & log sizes

How do we ensure the security properties of Anchor?

- Dynamic security analysis & formal verification of security protocols
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Evaluation

What is the performance overhead of Anchor?

- Persistent indices (ctree, btree, rtree, rbtree, hashmap)

How does Anchor affect basic PM management operations?

- PM operations (alloc, update, free)

What is the recovery and boot-up time of a PM pool with Anchor?

- Variable metadata log & log sizes

How do we ensure the security properties of Anchor?

- Dynamic security analysis & formal verification of security protocols
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Evaluation

- Experimental setup:
- Intel(R) Core(TM) i9-9900K CPU (3.60GHz, 8 cores) with SGX v.1
- 64 GB DRAM
- PM emulation and DAX file system backed by DRAM
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Evaluation

- Experimental setup:
- Intel(R) Core(TM) i9-9900K CPU (3.60GHz, 8 cores) with SGX v.1
- 64 GB DRAM
- PM emulation and DAX file system backed by DRAM

- Variants:
- PMDK — Plain PMDK running in the native environment
- Native Anchor — Anchor running outside the TEE (native environment)

- Anchor — Anchor running inside the TEE
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Performance overheads

PM data structures: ctree, btree, rtree, rbtree, hashmap
YCSB workload 10M ops, 50% reads [ 50% writes
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Data structure
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Higher is better
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Performance overheads

e PM data structures: ctree, btree, rtree, rbtree, hashmap
e YCSB workload 10M ops, 50% reads [ 50% writes

B PMDK
[ Native Anchor
B Anchor

400000 -
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300000 -
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200000 -

150000 A

100000 A

Throughput (Ops/sec)
Higher is better

50000 A

ctree btree rtree rbtree hashmap
Data structure

Anchor’s slowdown is reasonable considering its strong security properties




PM management operations

e PM management operations: alloc, update, free
e PM object size: 64, 128, 256, 512, 1024 bytes

10

Slowdown w.r.t. PMDK

64 128

512

PM object size (bytes)

Il alloc
[ update
B free
[ Native Anchor
[Z—1 Anchor

1024

Lower is better
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PM management operations TI.ITI

e PM management operations: alloc, update, free
e PM object size: 64, 128, 256, 512, 1024 bytes
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[ Anchor incurs lower overheads in PM operations as the PM object size increases J
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Summary TI.ITI

How to leverage TEEs to design a secure, performant PM system that preserves

crash consistency while following the PM programming model?

Anchor: A Library for Building Secure Persistent Memory Systems

e Security properties: confidentiality, integrity & freshness
e PMDK:-like programming model
e Secure crash consistency via a formally verified secure logging protocol

e Secure network stack and formally verified remote attestation protocol
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Recovery and boot-up time

e Metadata log size: 138, 224 MiB
e logsize: 0, ~1, ~5 MiB

Metadata log size (MiB) 138
Log size (MiB) 0 0.98 4.88

Recovery/boot time (s) 3.02 3.02 3.09

4.17

224
0.98 4.88
4.1 4.12
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Recovery and boot-up time

e Metadata log size: 138, 224 MiB
e logsize: 0, ~1, ~5 MiB

Metadata log size (MiB) 138 224
Log size (MiB) 0 0.98 4.88 0 0.98 4.88
Recovery/boot time (s) 3.02 3.02 3.09 4.17 4.1 4.12

[ Anchor has low boot-up times — mostly determined by the metadata log size }
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Challenge #4: Formal verification & security analysis TI.ITI

e The securelogging protocol must preserve the required security properties

e The attestation protocol must be correct and adhere to the security principles

e The data management operations do not introduce additional attack vectors
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Challenge #4: Formal verification & security analysis TI.ITI

e The securelogging protocol must preserve the required security properties

e The attestation protocol must be correct and adhere to the security principles

e The data management operations do not introduce additional attack vectors

Formally verify the secure logging and the remote attestation protocols &
leverage dynamic analysis tools for security analysis
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Security analysis

e Dynamic security analysis
o Memory safety guarantees using Address Sanitizer

o  Crash consistency using Valgrind’s memcheck

e Formal verification of Security Protocols using Tamarin
o Remote attestation protocol

o Secure logging protocol

70



Security analysis TI_ITI

e Dynamic security analysis
o Memory safety guarantees using Address Sanitizer

o  Crash consistency using Valgrind’s memcheck

e Formal verification of Security Protocols using Tamarin
o Remote attestation protocol

o Secure logging protocol

Anchor does not introduce memory safety bugs, preserves the crash consistency
property and uses formally verified security protocols
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Trusted execution environments TI_ITI

* TEE: Hardware extensions (ISAs) for trusted computing | Memory address space

(e.g. Intel SGX, ARM TrustZone)
Secure memory

e Abstraction: Secure memory region where application region (enclave)
code and data are secured Shielded
application

e Shielded execution: Runtime framework for running
unmodified applications inside a TEE

Operating system

TEE
Hardware (SGX)
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Component #1: In-memory metadata TI.ITI

[ In-memory structures maintain object metadata }

) Search Object integrity signature
Object ID — ; EPC metadata index

EPC index for secure metadata store and data caching for performance
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Component #2: Metadata log file (manifest)

[ Manifest file maintains pool object metadata
Entry 1 Entry 2
Object . : :
: ) C Object Object | Trusted | Integrity Entry
Integrity : :
. ID size counter | signature data
signature

Loaded manifest data is the base for integrity and freshness checks



Component #3: Secure undo/redo log TI.ITI

[ Log mechanism to preserve crash consistency and security principles }

Log header Entry 1 Entry 2
Trusted Entry | Trusted | Logged | Integrity Entry
counter header | counter data | signature data

Achieve secure logging leveraging integrity signatures and trusted counters
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Component #4: Trusted counter TI.ITI

[ Trusted counter helps us argue about the freshness property }
Async Async
increment increment

Expected time

» Time

Unstable time
Sync Sync
Trusted counter checks performed for freshness verification
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Persistent memory TI.ITI
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Persistent memory TI_ITI
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System operations - Read
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System operations - Read

1. Read request
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System operations - Read TI.ITI

2. Integrity signature lookup
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System operations - Read TI.ITI

3. Fetch object data

Trusted |
enclave —— [ Trusted } [PM management} [In-memory} ] Ur;trusted

‘ ost memory
memory counter engine metadata

|
|
. Operating system MMU|Map |

S S — |

Client Untrusted
l Secure PM pool | [ Metadata log file ] PM

83

‘ Anchor controller




System operations - Read TI.ITI

4. Integrity signature verification & decryption
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System operations - Read

TUTI

5. Return object data to the client
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System operations - Recovery
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System operations - Recovery TI.ITI

1. System recovery
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System operations - Recovery TI.ITI

2. Log header check for recovery
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System operations - Recovery TI.ITI

3. Fetch log entries in secure memory
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System operations - Recovery TI.ITI

4. Perform integrity & freshness check
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System operations - Recovery TI.ITI

5. Apply (undo/redo) logged operations to PM
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System operations - Recovery TI.ITI

6. Invalidate logs
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System operations - Recovery TI.ITI

7. Return successful recovery message
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System operations - Read (embedded animations)
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System operations - Write (embedded animations)
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System operations - Recovery (embedded animations) TI_ITI
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